3.3.69 \(\int \frac {x^2 (d^2-e^2 x^2)^p}{d+e x} \, dx\) [269]

3.3.69.1 Optimal result
3.3.69.2 Mathematica [A] (verified)
3.3.69.3 Rubi [A] (verified)
3.3.69.4 Maple [F]
3.3.69.5 Fricas [F]
3.3.69.6 Sympy [C] (verification not implemented)
3.3.69.7 Maxima [F]
3.3.69.8 Giac [F]
3.3.69.9 Mupad [F(-1)]

3.3.69.1 Optimal result

Integrand size = 25, antiderivative size = 119 \[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=\frac {d^2 \left (d^2-e^2 x^2\right )^p}{2 e^3 p}-\frac {\left (d^2-e^2 x^2\right )^{1+p}}{2 e^3 (1+p)}+\frac {x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},1-p,\frac {5}{2},\frac {e^2 x^2}{d^2}\right )}{3 d} \]

output
1/2*d^2*(-e^2*x^2+d^2)^p/e^3/p-1/2*(-e^2*x^2+d^2)^(p+1)/e^3/(p+1)+1/3*x^3* 
(-e^2*x^2+d^2)^p*hypergeom([3/2, 1-p],[5/2],e^2*x^2/d^2)/d/((1-e^2*x^2/d^2 
)^p)
 
3.3.69.2 Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.66 \[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=-\frac {\left (1+\frac {e x}{d}\right )^{-p} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (\left (1+\frac {e x}{d}\right )^p \left (-e^2 x^2 \left (1-\frac {e^2 x^2}{d^2}\right )^p+d^2 \left (-1+\left (1-\frac {e^2 x^2}{d^2}\right )^p\right )\right )+2 d e (1+p) x \left (1+\frac {e x}{d}\right )^p \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},\frac {e^2 x^2}{d^2}\right )+d (d-e x) \left (2-\frac {2 e^2 x^2}{d^2}\right )^p \operatorname {Hypergeometric2F1}\left (1-p,1+p,2+p,\frac {d-e x}{2 d}\right )\right )}{2 e^3 (1+p)} \]

input
Integrate[(x^2*(d^2 - e^2*x^2)^p)/(d + e*x),x]
 
output
-1/2*((d^2 - e^2*x^2)^p*((1 + (e*x)/d)^p*(-(e^2*x^2*(1 - (e^2*x^2)/d^2)^p) 
 + d^2*(-1 + (1 - (e^2*x^2)/d^2)^p)) + 2*d*e*(1 + p)*x*(1 + (e*x)/d)^p*Hyp 
ergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2] + d*(d - e*x)*(2 - (2*e^2*x^2) 
/d^2)^p*Hypergeometric2F1[1 - p, 1 + p, 2 + p, (d - e*x)/(2*d)]))/(e^3*(1 
+ p)*(1 + (e*x)/d)^p*(1 - (e^2*x^2)/d^2)^p)
 
3.3.69.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {583, 542, 243, 53, 279, 278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx\)

\(\Big \downarrow \) 583

\(\displaystyle \int x^2 (d-e x) \left (d^2-e^2 x^2\right )^{p-1}dx\)

\(\Big \downarrow \) 542

\(\displaystyle d \int x^2 \left (d^2-e^2 x^2\right )^{p-1}dx-e \int x^3 \left (d^2-e^2 x^2\right )^{p-1}dx\)

\(\Big \downarrow \) 243

\(\displaystyle d \int x^2 \left (d^2-e^2 x^2\right )^{p-1}dx-\frac {1}{2} e \int x^2 \left (d^2-e^2 x^2\right )^{p-1}dx^2\)

\(\Big \downarrow \) 53

\(\displaystyle d \int x^2 \left (d^2-e^2 x^2\right )^{p-1}dx-\frac {1}{2} e \int \left (\frac {d^2 \left (d^2-e^2 x^2\right )^{p-1}}{e^2}-\frac {\left (d^2-e^2 x^2\right )^p}{e^2}\right )dx^2\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {\left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \int x^2 \left (1-\frac {e^2 x^2}{d^2}\right )^{p-1}dx}{d}-\frac {1}{2} e \int \left (\frac {d^2 \left (d^2-e^2 x^2\right )^{p-1}}{e^2}-\frac {\left (d^2-e^2 x^2\right )^p}{e^2}\right )dx^2\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},1-p,\frac {5}{2},\frac {e^2 x^2}{d^2}\right )}{3 d}-\frac {1}{2} e \int \left (\frac {d^2 \left (d^2-e^2 x^2\right )^{p-1}}{e^2}-\frac {\left (d^2-e^2 x^2\right )^p}{e^2}\right )dx^2\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},1-p,\frac {5}{2},\frac {e^2 x^2}{d^2}\right )}{3 d}-\frac {1}{2} e \left (\frac {\left (d^2-e^2 x^2\right )^{p+1}}{e^4 (p+1)}-\frac {d^2 \left (d^2-e^2 x^2\right )^p}{e^4 p}\right )\)

input
Int[(x^2*(d^2 - e^2*x^2)^p)/(d + e*x),x]
 
output
-1/2*(e*(-((d^2*(d^2 - e^2*x^2)^p)/(e^4*p)) + (d^2 - e^2*x^2)^(1 + p)/(e^4 
*(1 + p)))) + (x^3*(d^2 - e^2*x^2)^p*Hypergeometric2F1[3/2, 1 - p, 5/2, (e 
^2*x^2)/d^2])/(3*d*(1 - (e^2*x^2)/d^2)^p)
 

3.3.69.3.1 Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 583
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[c^(2*n)/a^n   Int[(e*x)^m*((a + b*x^2)^(n + p)/(c - d*x)^ 
n), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c^2 + a*d^2, 0] && I 
LtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.3.69.4 Maple [F]

\[\int \frac {x^{2} \left (-e^{2} x^{2}+d^{2}\right )^{p}}{e x +d}d x\]

input
int(x^2*(-e^2*x^2+d^2)^p/(e*x+d),x)
 
output
int(x^2*(-e^2*x^2+d^2)^p/(e*x+d),x)
 
3.3.69.5 Fricas [F]

\[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{2}}{e x + d} \,d x } \]

input
integrate(x^2*(-e^2*x^2+d^2)^p/(e*x+d),x, algorithm="fricas")
 
output
integral((-e^2*x^2 + d^2)^p*x^2/(e*x + d), x)
 
3.3.69.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 12.29 (sec) , antiderivative size = 14895, normalized size of antiderivative = 125.17 \[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=\text {Too large to display} \]

input
integrate(x**2*(-e**2*x**2+d**2)**p/(e*x+d),x)
 
output
Piecewise((0**p*d**4*d**(2*p + 2)*p*log(d**2/(e**2*x**2))*gamma(1/2 - p)*g 
amma(p + 1)/(-2*d**4*e**3*p*gamma(1/2 - p)*gamma(p + 1) - 2*d**4*e**3*gamm 
a(1/2 - p)*gamma(p + 1) + 2*d**2*e**5*p*x**2*gamma(1/2 - p)*gamma(p + 1) + 
 2*d**2*e**5*x**2*gamma(1/2 - p)*gamma(p + 1)) - 0**p*d**4*d**(2*p + 2)*p* 
log(d**2/(e**2*x**2) - 1)*gamma(1/2 - p)*gamma(p + 1)/(-2*d**4*e**3*p*gamm 
a(1/2 - p)*gamma(p + 1) - 2*d**4*e**3*gamma(1/2 - p)*gamma(p + 1) + 2*d**2 
*e**5*p*x**2*gamma(1/2 - p)*gamma(p + 1) + 2*d**2*e**5*x**2*gamma(1/2 - p) 
*gamma(p + 1)) - 2*0**p*d**4*d**(2*p + 2)*p*acoth(d/(e*x))*gamma(1/2 - p)* 
gamma(p + 1)/(-2*d**4*e**3*p*gamma(1/2 - p)*gamma(p + 1) - 2*d**4*e**3*gam 
ma(1/2 - p)*gamma(p + 1) + 2*d**2*e**5*p*x**2*gamma(1/2 - p)*gamma(p + 1) 
+ 2*d**2*e**5*x**2*gamma(1/2 - p)*gamma(p + 1)) + 0**p*d**4*d**(2*p + 2)*l 
og(d**2/(e**2*x**2))*gamma(1/2 - p)*gamma(p + 1)/(-2*d**4*e**3*p*gamma(1/2 
 - p)*gamma(p + 1) - 2*d**4*e**3*gamma(1/2 - p)*gamma(p + 1) + 2*d**2*e**5 
*p*x**2*gamma(1/2 - p)*gamma(p + 1) + 2*d**2*e**5*x**2*gamma(1/2 - p)*gamm 
a(p + 1)) - 0**p*d**4*d**(2*p + 2)*log(d**2/(e**2*x**2) - 1)*gamma(1/2 - p 
)*gamma(p + 1)/(-2*d**4*e**3*p*gamma(1/2 - p)*gamma(p + 1) - 2*d**4*e**3*g 
amma(1/2 - p)*gamma(p + 1) + 2*d**2*e**5*p*x**2*gamma(1/2 - p)*gamma(p + 1 
) + 2*d**2*e**5*x**2*gamma(1/2 - p)*gamma(p + 1)) - 2*0**p*d**4*d**(2*p + 
2)*acoth(d/(e*x))*gamma(1/2 - p)*gamma(p + 1)/(-2*d**4*e**3*p*gamma(1/2 - 
p)*gamma(p + 1) - 2*d**4*e**3*gamma(1/2 - p)*gamma(p + 1) + 2*d**2*e**5...
 
3.3.69.7 Maxima [F]

\[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{2}}{e x + d} \,d x } \]

input
integrate(x^2*(-e^2*x^2+d^2)^p/(e*x+d),x, algorithm="maxima")
 
output
integrate((-e^2*x^2 + d^2)^p*x^2/(e*x + d), x)
 
3.3.69.8 Giac [F]

\[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{2}}{e x + d} \,d x } \]

input
integrate(x^2*(-e^2*x^2+d^2)^p/(e*x+d),x, algorithm="giac")
 
output
integrate((-e^2*x^2 + d^2)^p*x^2/(e*x + d), x)
 
3.3.69.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (d^2-e^2 x^2\right )^p}{d+e x} \, dx=\int \frac {x^2\,{\left (d^2-e^2\,x^2\right )}^p}{d+e\,x} \,d x \]

input
int((x^2*(d^2 - e^2*x^2)^p)/(d + e*x),x)
 
output
int((x^2*(d^2 - e^2*x^2)^p)/(d + e*x), x)